ScyllaDB University LIVE, FREE Virtual Training Event | March 21
Register for Free
ScyllaDB Documentation Logo Documentation
  • Server
  • Cloud
  • Tools
    • ScyllaDB Manager
    • ScyllaDB Monitoring Stack
    • ScyllaDB Operator
  • Drivers
    • CQL Drivers
    • DynamoDB Drivers
  • Resources
    • ScyllaDB University
    • Community Forum
    • Tutorials
Download
ScyllaDB Docs ScyllaDB Open Source Knowledge Base Gossip in ScyllaDB

Caution

You're viewing documentation for a previous version. Switch to the latest stable version.

Gossip in ScyllaDB¶

Topic: Internals

Audience: Devops professionals, architects

ScyllaDB, like Apache Cassandra, uses a type of protocol called “gossip” to exchange metadata about the identities of nodes in a cluster and whether nodes are up or down. Of course, since there is no single point of failure there can be no single registry of node state, so nodes must share information among themselves.

Gossip protocols are only required in distributed systems so are probably new to most administrators. According to Wikipedia, the ideal gossip protocol has several qualities:

  • Gossip involves periodic, pairwise interactions between nodes

  • Information exchanged between nodes is of bounded size.

  • The state of at least one agent changes to reflect the state of the other.

  • Reliable communication is not assumed.

  • The frequency of the interactions is low compared to typical message latencies so that the protocol costs are negligible.

  • There is some form of randomness in the peer selection.

  • Due to the replication there is an implicit redundancy of the delivered information.

Individual gossip interactions in ScyllaDB, like Apache Cassandra, are relatively infrequent and simple. Each node, once per second, randomly selects 1 to 3 nodes to interact with.

Each node runs the gossip protocol once per second, but the gossip runs are not synchronized across the cluster.

One round = three messages¶

One round of gossip consists of three messages. (We’ll call the node initiating the round Node A, and the randomly selected node Node B).

  • Node A sends: gossip_digest_syn

  • Node B sends: gossip_digest_ack

  • Node A replies: gossip_digest_ack2

While the names are borrowed from TCP, gossip does not require making a new TCP connection between nodes.

What are nodes gossiping about?¶

Nodes exchange a small amount of information about each other. The main two data structures are heart_beat_state and application_state.

A heart_beat_state contains integers for generation and “version number”. The generation is a number that grows each time the node is started, and version number is an ever-increasing integer that covers the version of the application state. ApplicationState contains data on status of components within the node (such as load) and a version number. Each node maintains a map of node IP address and node gossip metadata for all nodes in the cluster including itself.

A round of gossip is designed to minimize the amount of data sent, while resolving any conflicts between the node state data on the two gossiping nodes. In the gossip_digest_syn message, Node A sends a gossip digest: a list of all its known nodes, generations, and versions. Node B compares generation and version to its known nodes, and, in the gossip_digest_ack message, sends any of its own data that differ, along with its own digest. Finally, Node A replies with any state differences between its known state and Node B’s digest.

ScyllaDB gossip implementation¶

ScyllaDB gossip messages run over the ScyllaDB messaging_service, along with all other inter-node traffic including sending mutations, and streaming of data. ScyllaDB’s messaging_service runs on the Seastar RPC service. Seastar is the scalable software framework for multicore systems that ScyllaDB uses. If no TCP connection is up between a pair of nodes, messaging_service will create a new one. If it is up already, messaging service will use the existing one.

Gossip on multicore¶

Each ScyllaDB node consists of several independent shards, one per core, which operate on a shared-nothing basis and communicate without locking. Internally, the gossip component, which runs on CPU 0 only, needs to have connections forwarded from other shards. The node state data, shared by gossip, is replicated to the other shards.

The gossip protocol provides important advantages especially for large clusters. Compared to “flooding” information across nodes, it can synchronize data faster, and allow for fast recovery when a new node is down or a node is returned to service. Nodes only mark other nodes as down if an actual failure is detected, but gossip quickly shares the good news of a node coming back up.

References¶

Cassandra Wiki: ArchitectureGossip

Apple Inc.: Cassandra Internals — Understanding Gossip

Using Gossip Protocols For Failure Detection, Monitoring, Messaging And Other Good Things, by Todd Hoff

Gossip protocol on Wikipedia

Knowledge Base

Copyright

© 2016, The Apache Software Foundation.

Apache®, Apache Cassandra®, Cassandra®, the Apache feather logo and the Apache Cassandra® Eye logo are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries. No endorsement by The Apache Software Foundation is implied by the use of these marks.

Was this page helpful?

PREVIOUS
How to Change gc_grace_seconds for a Table
NEXT
Increase Permission Cache to Avoid Non-paged Queries
  • Create an issue
  • Edit this page

On this page

  • Gossip in ScyllaDB
    • One round = three messages
    • What are nodes gossiping about?
    • ScyllaDB gossip implementation
    • Gossip on multicore
    • References
ScyllaDB Open Source
  • 6.2
    • master
    • 6.2
    • 6.1
    • 6.0
    • 5.4
    • 5.2
    • 5.1
  • Getting Started
    • Install ScyllaDB
      • Launch ScyllaDB on AWS
      • Launch ScyllaDB on GCP
      • Launch ScyllaDB on Azure
      • ScyllaDB Web Installer for Linux
      • Install ScyllaDB Linux Packages
      • Install scylla-jmx Package
      • Run ScyllaDB in Docker
      • Install ScyllaDB Without root Privileges
      • Air-gapped Server Installation
      • ScyllaDB Housekeeping and how to disable it
      • ScyllaDB Developer Mode
    • Configure ScyllaDB
    • ScyllaDB Configuration Reference
    • ScyllaDB Requirements
      • System Requirements
      • OS Support by Linux Distributions and Version
      • Cloud Instance Recommendations
      • ScyllaDB in a Shared Environment
    • Migrate to ScyllaDB
      • Migration Process from Cassandra to ScyllaDB
      • ScyllaDB and Apache Cassandra Compatibility
      • Migration Tools Overview
    • Integration Solutions
      • Integrate ScyllaDB with Spark
      • Integrate ScyllaDB with KairosDB
      • Integrate ScyllaDB with Presto
      • Integrate ScyllaDB with Elasticsearch
      • Integrate ScyllaDB with Kubernetes
      • Integrate ScyllaDB with the JanusGraph Graph Data System
      • Integrate ScyllaDB with DataDog
      • Integrate ScyllaDB with Kafka
      • Integrate ScyllaDB with IOTA Chronicle
      • Integrate ScyllaDB with Spring
      • Shard-Aware Kafka Connector for ScyllaDB
      • Install ScyllaDB with Ansible
      • Integrate ScyllaDB with Databricks
      • Integrate ScyllaDB with Jaeger Server
      • Integrate ScyllaDB with MindsDB
    • Tutorials
  • ScyllaDB for Administrators
    • Administration Guide
    • Procedures
      • Cluster Management
      • Backup & Restore
      • Change Configuration
      • Maintenance
      • Best Practices
      • Benchmarking ScyllaDB
      • Migrate from Cassandra to ScyllaDB
      • Disable Housekeeping
    • Security
      • ScyllaDB Security Checklist
      • Enable Authentication
      • Enable and Disable Authentication Without Downtime
      • Creating a Custom Superuser
      • Generate a cqlshrc File
      • Reset Authenticator Password
      • Enable Authorization
      • Grant Authorization CQL Reference
      • Certificate-based Authentication
      • Role Based Access Control (RBAC)
      • Encryption: Data in Transit Client to Node
      • Encryption: Data in Transit Node to Node
      • Generating a self-signed Certificate Chain Using openssl
      • Configure SaslauthdAuthenticator
    • Admin Tools
      • Nodetool Reference
      • CQLSh
      • Admin REST API
      • Tracing
      • ScyllaDB SStable
      • ScyllaDB Types
      • SSTableLoader
      • cassandra-stress
      • SSTabledump
      • SSTableMetadata
      • ScyllaDB Logs
      • Seastar Perftune
      • Virtual Tables
      • Reading mutation fragments
      • Maintenance socket
      • Maintenance mode
      • Task manager
    • ScyllaDB Monitoring Stack
    • ScyllaDB Operator
    • ScyllaDB Manager
    • Upgrade Procedures
      • ScyllaDB Versioning
      • ScyllaDB Open Source Upgrade
      • ScyllaDB Open Source to ScyllaDB Enterprise Upgrade
      • ScyllaDB Image
      • ScyllaDB Enterprise
    • System Configuration
      • System Configuration Guide
      • scylla.yaml
      • ScyllaDB Snitches
    • Benchmarking ScyllaDB
    • ScyllaDB Diagnostic Tools
  • ScyllaDB for Developers
    • Develop with ScyllaDB
    • Tutorials and Example Projects
    • Learn to Use ScyllaDB
    • ScyllaDB Alternator
    • ScyllaDB Drivers
      • ScyllaDB CQL Drivers
      • ScyllaDB DynamoDB Drivers
  • CQL Reference
    • CQLSh: the CQL shell
    • Appendices
    • Compaction
    • Consistency Levels
    • Consistency Level Calculator
    • Data Definition
    • Data Manipulation
      • SELECT
      • INSERT
      • UPDATE
      • DELETE
      • BATCH
    • Data Types
    • Definitions
    • Global Secondary Indexes
    • Expiring Data with Time to Live (TTL)
    • Functions
    • Wasm support for user-defined functions
    • JSON Support
    • Materialized Views
    • Non-Reserved CQL Keywords
    • Reserved CQL Keywords
    • Service Levels
    • ScyllaDB CQL Extensions
  • Alternator: DynamoDB API in Scylla
    • Getting Started With ScyllaDB Alternator
    • ScyllaDB Alternator for DynamoDB users
  • Features
    • Lightweight Transactions
    • Global Secondary Indexes
    • Local Secondary Indexes
    • Materialized Views
    • Counters
    • Change Data Capture
      • CDC Overview
      • The CDC Log Table
      • Basic operations in CDC
      • CDC Streams
      • CDC Stream Generations
      • Querying CDC Streams
      • Advanced column types
      • Preimages and postimages
      • Data Consistency in CDC
    • Workload Attributes
  • ScyllaDB Architecture
    • Data Distribution with Tablets
    • ScyllaDB Ring Architecture
    • ScyllaDB Fault Tolerance
    • Consistency Level Console Demo
    • ScyllaDB Anti-Entropy
      • ScyllaDB Hinted Handoff
      • ScyllaDB Read Repair
      • ScyllaDB Repair
    • SSTable
      • ScyllaDB SSTable - 2.x
      • ScyllaDB SSTable - 3.x
    • Compaction Strategies
    • Raft Consensus Algorithm in ScyllaDB
    • Zero-token Nodes
  • Troubleshooting ScyllaDB
    • Errors and Support
      • Report a ScyllaDB problem
      • Error Messages
      • Change Log Level
    • ScyllaDB Startup
      • Ownership Problems
      • ScyllaDB will not Start
      • ScyllaDB Python Script broken
    • Upgrade
      • Inaccessible configuration files after ScyllaDB upgrade
    • Cluster and Node
      • Handling Node Failures
      • Failure to Add, Remove, or Replace a Node
      • Failed Decommission Problem
      • Cluster Timeouts
      • Node Joined With No Data
      • NullPointerException
      • Failed Schema Sync
    • Data Modeling
      • ScyllaDB Large Partitions Table
      • ScyllaDB Large Rows and Cells Table
      • Large Partitions Hunting
      • Failure to Update the Schema
    • Data Storage and SSTables
      • Space Utilization Increasing
      • Disk Space is not Reclaimed
      • SSTable Corruption Problem
      • Pointless Compactions
      • Limiting Compaction
    • CQL
      • Time Range Query Fails
      • COPY FROM Fails
      • CQL Connection Table
    • ScyllaDB Monitor and Manager
      • Manager and Monitoring integration
      • Manager lists healthy nodes as down
    • Installation and Removal
      • Removing ScyllaDB on Ubuntu breaks system packages
  • Knowledge Base
    • Upgrading from experimental CDC
    • Compaction
    • Consistency in ScyllaDB
    • Counting all rows in a table is slow
    • CQL Query Does Not Display Entire Result Set
    • When CQLSh query returns partial results with followed by “More”
    • Run ScyllaDB and supporting services as a custom user:group
    • Customizing CPUSET
    • Decoding Stack Traces
    • Snapshots and Disk Utilization
    • DPDK mode
    • Debug your database with Flame Graphs
    • How to Change gc_grace_seconds for a Table
    • Gossip in ScyllaDB
    • Increase Permission Cache to Avoid Non-paged Queries
    • How does ScyllaDB LWT Differ from Apache Cassandra ?
    • Map CPUs to ScyllaDB Shards
    • ScyllaDB Memory Usage
    • NTP Configuration for ScyllaDB
    • Updating the Mode in perftune.yaml After a ScyllaDB Upgrade
    • POSIX networking for ScyllaDB
    • ScyllaDB consistency quiz for administrators
    • Recreate RAID devices
    • How to Safely Increase the Replication Factor
    • ScyllaDB and Spark integration
    • Increase ScyllaDB resource limits over systemd
    • ScyllaDB Seed Nodes
    • How to Set up a Swap Space
    • ScyllaDB Snapshots
    • ScyllaDB payload sent duplicated static columns
    • Stopping a local repair
    • System Limits
    • How to flush old tombstones from a table
    • Time to Live (TTL) and Compaction
    • ScyllaDB Nodes are Unresponsive
    • Update a Primary Key
    • Using the perf utility with ScyllaDB
    • Configure ScyllaDB Networking with Multiple NIC/IP Combinations
  • Reference
    • AWS Images
    • Azure Images
    • GCP Images
    • Configuration Parameters
    • Glossary
    • Limits
    • API Reference (BETA)
    • Metrics (BETA)
  • ScyllaDB FAQ
  • Contribute to ScyllaDB
Docs Tutorials University Contact Us About Us
© 2025, ScyllaDB. All rights reserved. | Terms of Service | Privacy Policy | ScyllaDB, and ScyllaDB Cloud, are registered trademarks of ScyllaDB, Inc.
Last updated on 08 May 2025.
Powered by Sphinx 7.4.7 & ScyllaDB Theme 1.8.6