ScyllaDB University LIVE, FREE Virtual Training Event | March 21
Register for Free
ScyllaDB Documentation Logo Documentation
  • Server
  • Cloud
  • Tools
    • ScyllaDB Manager
    • ScyllaDB Monitoring Stack
    • ScyllaDB Operator
  • Drivers
    • CQL Drivers
    • DynamoDB Drivers
  • Resources
    • ScyllaDB University
    • Community Forum
    • Tutorials
Download
ScyllaDB Docs ScyllaDB Open Source Scylla for Developers ScyllaDB Features Scylla Open Source Features Global Secondary Indexes

Caution

You're viewing documentation for a previous version. Switch to the latest stable version.

Global Secondary Indexes¶

Global Secondary Indexes is available as a production ready feature in Scylla Open Source and Scylla Enterprise (all supported versions).

The data model in Scylla partitions data between cluster nodes using a partition key, which is defined in the database schema. This is an efficient way to look up rows because you can find the node hosting the row by hashing the partition key.

However, this also means that finding a row using a non-partition key requires a full table scan which is inefficient.

Global Secondary indexes (named “Secondary indexes” for the rest of this doc) are a mechanism in Scylla which allows efficient searches on non-partition keys by creating an index. They are indexes created on columns other than the entire partition key, where each secondary index indexes one specific column. A secondary index can index a column used in the partition key in the case of a composite partition key.

Secondary indexes provide the following advantages:

  1. Secondary Indexes are (mostly) transparent to your application. Queries have access to all the columns in the table, and you can add or remove indexes on the fly without changing the application.

  2. We can use the value of the indexed column to find the corresponding index table row in the cluster so that reads are scalable.

  3. Updates can be more efficient with secondary indexes than materialized views because only changes to the primary key and indexed column cause an update in the index view.

What’s more, the size of an index is proportional to the size of the indexed data. As data in Scylla is distributed to multiple nodes, it’s impractical to store the whole index on a single node, as it limits the size of the index to the capacity of a single node, not the capacity of the whole cluster.

For this reason, secondary indexes in Scylla are global rather than local. With global indexing, a materialized view is created for each index. This materialized view has the indexed column as a partition key and primary key (partition key and clustering keys) of the indexed row as clustering keys.

Secondary indexes created globally provide a further advantage: you can use the value of the indexed column to find the corresponding index table row in the cluster so reads are scalable. Note however, that with this approach, writes are slower than with local indexing because of the overhead required to keep the indexed view up to date.

How Secondary Index Queries Work¶

Scylla breaks indexed queries into two parts:

  1. a query on the index table to retrieve partition keys for the indexed table, and

  2. a query to the indexed table using the retrieved partition keys.

Seconday Index Flow

In the example above:

  1. The query arrives to a coordinator

  2. The node notices the query on an index column and issues a read to an index table, which has the index table row for the base table

  3. This query will return a partition key for the base table that is used to retrieve contents of the base table.

Example¶

The following is an example and does not contain all of the options available. To see all of the options available, refer to the CQL Reference.

Given the following schema:

CREATE TABLE buildings  (name text, city text, height int, PRIMARY KEY (name));

Let’s populate it with some test data:

INSERT INTO buildings(name,city,height) VALUES ('Burj Khalifa','Dubai',828);
INSERT INTO buildings(name,city,height) VALUES ('Shanghai Tower','Shanghai',632);
INSERT INTO buildings(name,city,height) VALUES ('Abraj Al-Bait Clock Tower','Mecca',601);
INSERT INTO buildings(name,city,height) VALUES ('Ping An Finance Centre','Shenzhen',599);
INSERT INTO buildings(name,city,height) VALUES ('Lotte World Tower','Seoul',554);
INSERT INTO buildings(name,city,height) VALUES ('One World Trade Center','New York City',541);
INSERT INTO buildings(name,city,height) VALUES ('Guangzhou CTF Finance Centre','Guangzhou',530);
INSERT INTO buildings(name,city,height) VALUES ('Tianjin CTF Finance Centre','Tianjin',530);
INSERT INTO buildings(name,city,height) VALUES ('China Zun','Beijing',528);
INSERT INTO buildings(name,city,height) VALUES ('Taipei 101','Taipei',508);

Note that if we try to query on a column (the part after the WHERE clause) in a Scylla table that isn’t part of the primary key, we’ll see that this is not permitted. For example:

SELECT * FROM buildings WHERE city = 'Shenzhen';

will result in an error.

Secondary indexes are designed to allow efficient querying of non-partition key columns. We can create an index on city by with the following CQL statements:

CREATE INDEX buildings_by_city ON buildings (city);

We can now query the indexed columns as if they were partition keys:

SELECT * FROM buildings WHERE city = 'Shenzhen';

returns

name                   | city     | height
-----------------------+----------+--------
Ping An Finance Centre | Shenzhen |    599

(1 rows)

Note that you can use the DESCRIBE command to see the whole schema for the buildings table, including created indexes and views:

cqlsh:mykeyspace> DESC buildings;

CREATE TABLE mykeyspace.buildings (
             name text PRIMARY KEY,
             city text,
             height int
) WITH bloom_filter_fp_chance = 0.01
AND caching = {'keys': 'ALL', 'rows_per_partition': 'ALL'}
...;

CREATE INDEX buildings_by_city ON mykeyspace.buildings (city);

CREATE MATERIALIZED VIEW mykeyspace.buildings_by_city_index AS
SELECT city, idx_token, name
FROM mykeyspace.buildings
WHERE city IS NOT NULL
PRIMARY KEY (city, idx_token, name)
WITH CLUSTERING ORDER BY (idx_token ASC, name ASC)
AND bloom_filter_fp_chance = 0.01
AND caching = {'keys': 'ALL', 'rows_per_partition': 'ALL'}
...

Note the Secondary Index is implemeted as MATERIALIZED VIEW.

More information¶

  • Local Secondary Indexes

  • CQL Reference - CQL Reference for Secondary Indexes

The following courses are available from Scylla University:

  • Materialized Views and Secondary Indexes

  • Global Secondary Indexes

Was this page helpful?

PREVIOUS
Lightweight Transactions
NEXT
Local Secondary Indexes
  • Create an issue
  • Edit this page

On this page

  • Global Secondary Indexes
    • How Secondary Index Queries Work
    • Example
    • More information
ScyllaDB Open Source
  • 5.1
    • master
    • 6.2
    • 6.1
    • 6.0
    • 5.4
    • 5.2
    • 5.1
  • Getting Started
    • Install Scylla
      • ScyllaDB Web Installer for Linux
      • Scylla Unified Installer (relocatable executable)
      • Air-gapped Server Installation
      • What is in each RPM
      • Scylla Housekeeping and how to disable it
      • Scylla Developer Mode
      • Scylla Configuration Reference
    • Configure Scylla
    • ScyllaDB Requirements
      • System Requirements
      • OS Support by Platform and Version
      • Scylla in a Shared Environment
    • Migrate to ScyllaDB
      • Migration Process from Cassandra to Scylla
      • Scylla and Apache Cassandra Compatibility
      • Migration Tools Overview
    • Integration Solutions
      • Integrate Scylla with Spark
      • Integrate Scylla with KairosDB
      • Integrate Scylla with Presto
      • Integrate Scylla with Elasticsearch
      • Integrate Scylla with Kubernetes
      • Integrate Scylla with the JanusGraph Graph Data System
      • Integrate Scylla with DataDog
      • Integrate Scylla with Kafka
      • Integrate Scylla with IOTA Chronicle
      • Integrate Scylla with Spring
      • Shard-Aware Kafka Connector for Scylla
      • Install Scylla with Ansible
      • Integrate Scylla with Databricks
    • Tutorials
  • Scylla for Administrators
    • Administration Guide
    • Procedures
      • Cluster Management
      • Backup & Restore
      • Change Configuration
      • Maintenance
      • Best Practices
      • Benchmarking Scylla
      • Migrate from Cassandra to Scylla
      • Disable Housekeeping
    • Security
      • Scylla Security Checklist
      • Enable Authentication
      • Enable and Disable Authentication Without Downtime
      • Generate a cqlshrc File
      • Reset Authenticator Password
      • Enable Authorization
      • Grant Authorization CQL Reference
      • Role Based Access Control (RBAC)
      • Scylla Auditing Guide
      • Encryption: Data in Transit Client to Node
      • Encryption: Data in Transit Node to Node
      • Generating a self-signed Certificate Chain Using openssl
      • Encryption at Rest
      • LDAP Authentication
      • LDAP Authorization (Role Management)
    • Admin Tools
      • Nodetool Reference
      • CQLSh
      • REST
      • Tracing
      • Scylla SStable
      • Scylla Types
      • SSTableLoader
      • cassandra-stress
      • SSTabledump
      • SSTable2json
      • SSTable Index
      • Scylla Logs
      • Seastar Perftune
      • Virtual Tables
    • ScyllaDB Monitoring Stack
    • ScyllaDB Operator
    • ScyllaDB Manager
    • Upgrade Procedures
      • Scylla Enterprise
      • Scylla Open Source
      • Scylla Open Source to Scylla Enterprise
      • Scylla AMI
    • System Configuration
      • System Configuration Guide
      • scylla.yaml
      • Scylla Snitches
    • Benchmarking Scylla
  • Scylla for Developers
    • Learn To Use Scylla
      • Scylla University
      • Course catalog
      • Scylla Essentials
      • Basic Data Modeling
      • Advanced Data Modeling
      • MMS - Learn by Example
      • Care-Pet an IoT Use Case and Example
    • Scylla Alternator
    • Scylla Features
      • Scylla Open Source Features
      • Scylla Enterprise Features
    • Scylla Drivers
      • Scylla CQL Drivers
      • Scylla DynamoDB Drivers
  • CQL Reference
    • CQLSh: the CQL shell
    • Appendices
    • Compaction
    • Consistency Levels
    • Consistency Level Calculator
    • Data Definition
    • Data Manipulation
    • Data Types
    • Definitions
    • Global Secondary Indexes
    • Additional Information
    • Expiring Data with Time to Live (TTL)
    • Additional Information
    • Functions
    • JSON Support
    • Materialized Views
    • Non-Reserved CQL Keywords
    • Reserved CQL Keywords
    • ScyllaDB CQL Extensions
  • Scylla Architecture
    • Scylla Ring Architecture
    • Scylla Fault Tolerance
    • Consistency Level Console Demo
    • Scylla Anti-Entropy
      • Scylla Hinted Handoff
      • Scylla Read Repair
      • Scylla Repair
    • SSTable
      • Scylla SSTable - 2.x
      • ScyllaDB SSTable - 3.x
    • Compaction Strategies
    • Raft Consensus Algorithm in ScyllaDB
  • Troubleshooting Scylla
    • Errors and Support
      • Report a Scylla problem
      • Error Messages
      • Change Log Level
    • Scylla Startup
      • Ownership Problems
      • Scylla will not Start
      • Scylla Python Script broken
    • Cluster and Node
      • Failed Decommission Problem
      • Cluster Timeouts
      • Node Joined With No Data
      • SocketTimeoutException
      • NullPointerException
    • Data Modeling
      • Scylla Large Partitions Table
      • Scylla Large Rows and Cells Table
      • Large Partitions Hunting
    • Data Storage and SSTables
      • Space Utilization Increasing
      • Disk Space is not Reclaimed
      • SSTable Corruption Problem
      • Pointless Compactions
      • Limiting Compaction
    • CQL
      • Time Range Query Fails
      • COPY FROM Fails
      • CQL Connection Table
      • Reverse queries fail
    • Scylla Monitor and Manager
      • Manager and Monitoring integration
      • Manager lists healthy nodes as down
  • Knowledge Base
    • Upgrading from experimental CDC
    • Compaction
    • Counting all rows in a table is slow
    • CQL Query Does Not Display Entire Result Set
    • When CQLSh query returns partial results with followed by “More”
    • Run Scylla and supporting services as a custom user:group
    • Decoding Stack Traces
    • Snapshots and Disk Utilization
    • DPDK mode
    • Debug your database with Flame Graphs
    • How to Change gc_grace_seconds for a Table
    • Gossip in Scylla
    • Increase Permission Cache to Avoid Non-paged Queries
    • How does Scylla LWT Differ from Apache Cassandra ?
    • Map CPUs to Scylla Shards
    • Scylla Memory Usage
    • NTP Configuration for Scylla
    • Updating the Mode in perftune.yaml After a ScyllaDB Upgrade
    • POSIX networking for Scylla
    • Scylla consistency quiz for administrators
    • Recreate RAID devices
    • How to Safely Increase the Replication Factor
    • Scylla and Spark integration
    • Increase Scylla resource limits over systemd
    • Scylla Seed Nodes
    • How to Set up a Swap Space
    • Scylla Snapshots
    • Scylla payload sent duplicated static columns
    • Stopping a local repair
    • System Limits
    • How to flush old tombstones from a table
    • Time to Live (TTL) and Compaction
    • Scylla Nodes are Unresponsive
    • Update a Primary Key
    • Using the perf utility with Scylla
    • Configure Scylla Networking with Multiple NIC/IP Combinations
  • ScyllaDB University
  • Scylla FAQ
  • Contribute to ScyllaDB
  • Glossary
  • Alternator: DynamoDB API in Scylla
    • Getting Started With ScyllaDB Alternator
    • Scylla Alternator for DynamoDB users
Docs Tutorials University Contact Us About Us
© 2025, ScyllaDB. All rights reserved. | Terms of Service | Privacy Policy | ScyllaDB, and ScyllaDB Cloud, are registered trademarks of ScyllaDB, Inc.
Last updated on 13 May 2025.
Powered by Sphinx 7.4.7 & ScyllaDB Theme 1.8.6